Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Journal of Earth System Science ; 130(3), 2021.
Article in English | ProQuest Central | ID: covidwho-1349357

ABSTRACT

The nationwide lockdown in India to curb the spread of Coronavirus disease 2019 (COVID-19) led to colossal reduction in anthropogenic emissions. Here, we investigated the impact of lockdown on surface ozone (O3) and nitrogen dioxide (NO2) over a tropical coastal station – Thumba, Thiruvananthapuram (8.5°N, 76.9°E). Daytime as well as night-time NO2 showed reduction by 0.8 (40%) and 2.3 (35%) ppbv, respectively during the lockdown period of 25–30 March 2020 as compared with the same period of previous 3 years. Unlike many urban locations, daytime surface O3 is found to be dramatically reduced by 15 ppbv (36%) with O3 production rate being lower by a factor of 3 during the lockdown. Interestingly, a feature of O3-hump during the onset of land breeze typically observed during 1997–1998 has reappeared with magnitude of 5–10 ppbv. A photochemical box model, capturing this feature, revealed that significant O3 sustained till onset of land breeze over the land due to weaker titration with NOx during lockdown. It is suggested that the transport of this O3 rich air with onset of land breeze led to the observed hump. Our measurements unravel a remarkable impact of the COVID-19 lockdown on the chemistry and dynamics of O3 over this tropical coastal environment.

2.
Current Science (00113891) ; 120(2):341-351, 2021.
Article in English | Academic Search Complete | ID: covidwho-1052569

ABSTRACT

In this study, we assess the response of ambient aerosol black carbon (BC) mass concentrations and spectral absorption properties across Indian mainland during the nation-wide lockdown (LD) in connection with the Coronavirus Disease 19 (COVID-19) pandemic. The LD had brought near to total cut-off of emissions from industrial, traffic (road, railways, marine and air) and energy sectors, though the domestic emissions remained fairly unaltered. This provided a unique opportunity to delineate the impact of fossil fuel combustion sources on atmospheric BC characteristics. In this context, the primary data of BC measured at the national network of aerosol observatories (ARFINET) under ISRO-GBP are examined to assess the response to the seizure of emissions over distinct geographic parts of the country. Results indicate that average BC concentrations over the Indian mainland are curbed down significantly (10–40%) from prelockdown observations during the first and most intense phase of lockdown. This decline is significant with respect to the long-term (2015–2019) averaged (climatological mean) values. The drop in BC is most pronounced over the Indo-Gangetic Plain (>60%) and north-eastern India (>30%) during the second phase of lockdown, while significant reduction is seen during LD1 (16–60%) over central and peninsular Indian as well as Himalayan and sub-Himalayan regions. Despite such a large reduction, the absolute magnitude of BC remained higher over the IGP and north-eastern sites compared to other parts of India. Notably, the spectral absorption index of aerosols changed very little over most of the locations, indicating the still persisting contribution of fossil-fuel emissions over most of the locations. [ABSTRACT FROM AUTHOR] Copyright of Current Science (00113891) is the property of Indian Academy of Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

SELECTION OF CITATIONS
SEARCH DETAIL